Particle damage sources for fused silica optics and their mitigation on high energy laser systems
نویسندگان
چکیده
منابع مشابه
Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics
The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of...
متن کاملInvestigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation.
Laser damage mitigation' is a process developed to prevent the growth of nanosecond laser-initiated damage sites under successive irradiation. It consists of re-fusing the damage area with a CO2 laser. In this paper we investigate the stress field created around mitigated sites which could have an influence on the efficiency of the process. A numerical model of CO2 laser interaction with fused ...
متن کاملMechanisms of CO2 laser mitigation of laser damage growth in fused silica
Theoretical models for heating, evaporation, material flow, and stress and strain generation accompanying CO2 laser damage mitigation and surface treatment of fused silica are developed to aid understanding of scaling with process parameters. We find that lateral nonlinear heat transport is an important cooling mechanism, more significant than evaporative cooling. Scaling laws relating experime...
متن کاملArresting UV-Laser Damage in Fused Silica
26 LLE Review, Volume 77 Deciding when to replace spot-damage-afflicted fused-silica optics or, in the case of inaccessible, space-based lasers, predicting the useful service life of fused-silica optics before catastrophic, pulsed-laser-driven crack growth shatters a part has recently become simpler. By empirically deriving a rule for laser-driven crack growth in fused silica as a function of t...
متن کاملPolishing-induced contamination of fused silica optics and laser induced damage density at 351 nm.
In this paper we study the effect of contamination induced by fabrication process on laser damage density of fused silica polished parts at 351 nm in nanosecond regime. We show, owing to recent developments of our raster scan metrology, that a good correlation exists between damage density and concentration of certain contaminants for the considered parts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2017
ISSN: 1094-4087
DOI: 10.1364/oe.25.011414